

Central Power Solution

Power large scale horticulture

iHP, Lower Total Cost of Ownership (TCO) The "Makes Sense" Architecture

iHP LED Lighting Systems - 12KW & 24KW Units

Total Power: Up to 24 KW Input Voltage: 180-264 Vac 342-528 Vac Single Phase or 3-Phase # of Outputs: Up to 8

Available Modules

Parameter	SL	SQ	ST	sw	58	S1	S2	SA
Nominal O/P Voltage (V)	12.0	24.0	32.0	48.0	80.0	125.0	200.0	250
O/P Voltage Range (V)	0.6 -14.4	1.2 -28.8	1.6-38.4	2.4 -57.6	4.0 -96.0	6.25 -150.0	10 -240	12.5 - 300
Max Power (W)	2400	2880	2880	3000	3000	3000	3000	3000
O/P Current Range (A)	0 -200	0 -120	0-90	0 -62.5	0 -37.5	0 -24	0 -15	0 -12

SAFETY

- UL 60950-1 2nd Edition; EN60950-1; IEC60950-1/EN60950
- CSA C22.2 No. 60950-1-07, 2nd Edition
- EN60601-1; IEC60601-1; IEC60601
- UL 60601-1 1st Edition; ANSI/AAMI ES60601-1 (2005 + C1:09 + A2:10) 3rd Ed
- CAN/CSA-C22.2 No. 60601-1 (2008)
- CB Certificate and Report
- CE (LVD+RoHS), EN60950-1

iHP24

Accessories can include Parallel and Series bus bars

Series Busbar

iHP Configurable AC Inputs New 1 Phase or 3 Phase / Low Line or High Line For Canadian Market iHP24L3A iHP24C3A iHP12L3A iHP24H3A iHP12L1A iHP12H3A 208/240 3P 208/240 3P 220/240 1P 380/480 3P 380/480 3P 600 3P+N **iHP AC Input Configurations iHP AC Input Configurations Fixed AC Input** INPUT CONNECTOR TERMINAL BLOCK DETAIL VIEW ROTATED 90 VARs or Installers can easily SCALE: NTS MFR: PHOENIX CONTACT configure the iHP AC inputs MPN: 1967472 CONDUCTOR RANGE between 1 Phase or 3 Phase. 18 – 6 AWG TIGHTENING TORQUE 1.8 N-m MAX Low Line or High Line in the field by simply changing to a different AC Config board within the iHP Chassis. **AC Input Config Board Options** 1 Phase LL - 73-778-002 3 Phase LL - 73-778-001 3 Phase HL – 73-778-016 AC input wire terminals

Centralized Remote DC Power System

Low Voltage Vs. High Voltage Architecture

Power = Volts x Amps

Power = Volts x Amps **Centralized Remote DC Power System** Standard Lower Voltage 54Vdc LED Grow Lights with High Voltage DC Architecture Wiring Diagram for 54Vdc LED Grow Light String in Serial Configuration with 270Vdc Bus 200 Feet of Wire => Voltage Drop = 55.6A x Wireless Control 54Vdc / 600W LED 54Vdc / 600W LED 54Vdc / 600W LED 0.039 ohms = 2.2 VDCLuminaire AC Input Luminaire Luminaire Power Losses = $1^2 \times R$ = 1 Ø / 3 Ø THD ≥ 0.8% I = 11 Amps PG 121 Watts 275 Vdc 14 AWG 14 AWG L3 54Vdc / 600W LED 54Vdc / 600W LED PG 150 Amps Luminaire Luminaire NEMA 1/0 111 **[**]] Junction / Service entrance and Fuse Box Gauge feeder wire iHP 24KW per Rack 100 Amps **54VDC** Service entrance Gauge \$0.99/Foot feeder wire Example shown above is just one of the eight iHP 3KW modules set at 270Vdc & 11A constant current: 55 Amps Gauge Feeder and large appliance wire The iHP Remote Power Source is located outside of the grow area to eliminate the added heat source from the LED drivers, lowering cooling and energy costs. Higher DC output voltages reduces the wire gauge size and cuts down on the installation costs. 40 Amps 8 Gaude Faults in serial configuration could shut down all the luminaires connected is the same serial loop. 200 Feet of Wire => Voltage Drop = 12A x 0.51 ohms = 6.1 VPower Losses = |² x R = 72Watts 15 Amps 270VDC 14 Gauge General lighting \$0.09/Foot receptacle circuit Low Voltage

losses = 49 Watt = 166 BTU/HR

One (1) iHP 24KW Rack, replaces Forty (40) 600 Watt LED drivers - Reducing the LED light fixture heat contribution within the indoor Grow Area by 4,100 BTU / Hours.

Included Benefit.... Free lighting controls

Smart Power: Lighting Control (On-Off, Dimming and Programed Lighting Schedule)

One (1) PPCM Module, Can Provide Lighting Control (On-Off, Dimming and Programed Lighting Schedule for 240, 600W LED Grow Lights. <u>Eliminating the 0 to 10Vdc Wiring</u> and Expensive Programmable Logic Controller & Input / Output Lighting Control System.

iHP Digital-Off line &on Web Based Control - Using PPCM module to control Dashboards/GUI

Figure 2 - "Offline Mode" Connection Diagram

Manage Devices	Clear Data	Pause 🖕 🖻	🔿 Save	n Save a Copy
TIME NOW				
11:20:24			0	D 700
11:20:24	0	INPUTS		
11:20:23	0	START TIM	1E (24 HR MI	LITARY TIM
11:20:22	0	HOURS	MI	NUTES
11:20:21	0			
11:20:20	0	6	()
11:20:19	0	END TIME	(24 HD MILL	TABY TIME
11:20:18	0	ENDTIME	(24 FIR MILI	TART TIME
11:20:17	0	HOURS	MI	NUTES
11:20:16	0	18	(0
11:20:15	0			
11:20:14	0	CURRENT	(DC AMPS)	
11:20:13	0	MINIMUM	MA	XIMUM
11:20:12	0			
11:20:11	0	0		2.4

Design your own dashboard and control via mobile device

Supports various interfaces

Example of various Dashboards

iHP Analog Control

J1	Cirmel Norma	Ginnal Tumo	Durations
Pin No.	Signal Name	Signal Type	FUIRTIONS
1	0-10VEXT_VPROG	Input	Use to control the output voltage by applying 0 to 10V to this pin. This pin will function when the module is configured to Analog Voltage Source.
2 0-5VEXT_VPROG		Input	Use to control the output voltage by applying 0 to 5V to this pin. This pin will function when the module is configured to Analog Voltage Source.
3	0-10VEXT_IPROG	Input	Use to control the output current by applying 0 to 10V to this pin. This pin will function when the module is configured to Analog Current Source.
4	0-5VEXT_IPROG	Input	Use to control the output current by applying 0 to 5V to this pin. This pin will function when the module is configured to Analog Current Source.
5	Dummy Pin		9.72 9.807
6	Dummy Pin		
7	SYS_M_INHIBIT	Input	Signal to Inhibit the module
8	SYS_RTN		Ground reference for J1 signals.
9	SYS_M_ENABLE#	Input	Signal to Enable the module
10	SYS_M_FAULT#	Output	Signal to notify user that Fault occurred.

J2	Signal Name	Signal Type	Functions
Pin No.			
1	V_SNS+	Input	Signal use for module positive remote sense
2	D_RTN		Ground reference for IMON or VMON signals
3	EXT_ISENSE+	Input	Input for external resistor shunt for external current sensing application.
4	D_RTN		Ground reference for ISHARE signal
5	IMON	Output	Analog signal to report the output current in scaled value (0- 10V)
6	Dummy Pin		
7	D_RTN		Ground reference for IMON or VMON signals
8	V_SNS-	Input	Signal use for module negative remote sense
9	EXT_ISENSE-	Input	Input for external resistor shunt for external current sensing application
10	ISHARE	Output	Signal for active current sharing
11	VMON	Output	Analog signal to report the output voltage in scaled value (0- 10V)
12	Dummy Pin		

J1 Signal

Pin#	Signal	Signal	Pin#
5	Dummy Net	SYS_M_FAULT#	10
4	0-5VEXT_IPROG	SYS_M_ENABLE#	9
3	0-10VEXT_IPROG	SYS_RTN	8
2	0-5VEXT_VPROG	SYS_M_INHIBIT	7
1	0-10VEXT_VPROG	Dummy Net	6

J2 Signal						
Pin#	Signal	Signal	Pin#			
6	Dummy Net	Dummy Net	12			
5	IMON	VMON	11			
4	D_RTN	ISHARE	10			
3	EXT_ISENSE+	EXT_ISENSE-	9			
2	D_RTN	V_SNS-	8			
1	V_SNS+	D_RTN	7			

G

Example using 0-5V control. Both for controlling the voltage and/or current

0-5VEXT IPROG	Corresponding Output Current	0-5VEXT_VPROG	Corresponding Output Voltage
		0V-0.21V	5% Nominal Output Voltage
0V	0% Nominal Output Current	1.25V	30% Nominal Output Voltage
1.25V	25% Nominal Output Current	1.201	solution in a catput voltage
		2.5V	60% Nominal Output Voltage
2.5V	2.5V 50% Nominal Output Current		90% Nominal Output Voltage
3.75V	75% Nominal Output Current	4.166V	100% Nominal Output Voltage
5V	Nominal Output Current	5V	120% Nominal Output Voltage
	er en		

Typical iHP Centralized Distributed 250VDC Installation for an Indoor Grow Facility

Traditional AC Distribution with LED Drivers <u>Versus</u>

Centralized iHP Hi- Voltage DC Distribution

Real case study for current customer

Case Study - One Acre of Indoor Grow Area

Traditional AC Power Distribution with LED Drivers

• Eliminate all of the 1Ø LED Drivers (added heat)

- Eliminate all of the Output Circuit Breakers
- Eliminate all the Input / Output Control Modules
- Eliminate the two wire (copper) going to each LED Driver for on/off & dimming control.
- Simplified Installation with iHP that Significantly Lowers the Labor & Installation Costs.

Power System Assumptions

Capital Expense - Lights and Controls

Capital Expense

- Additional Air Conditioning Required for Indoor & Vertical Farming

ENERGY

SAVING

of 5%

iHP High Voltage DC Remote Power System

- Additional AC Required within the Indoor Grow Area
- iHP High Voltage DC Remote Power System Resides Outside of the Grow Area and DOSE NOT ADD any Additional Heat to Indoor Grow or Vertical Farming Applications.
- iHP Power Losses within the Grow Area
 0.00 BTUs / Hour
- Additional AC Cooling Capacity Required within Indoor Grow or Vertical Farming Applications

0 Tons

Additional Cost for Cooling Capacity

\$0.00

- Operating Temperature 0°C to +50°C at 100% Load
- Air Cooled

Traditional AC Power Distribution with LED Drivers

- Additional AC Required within the indoor Grow Area
- Power Losses within the Grow Area
 - LED Driver Efficiency = 95%
 - 600 Watts x 0.05 = 30 Watt of Heat Per Driver
 - o 30 Watts x 1,763 LED Drivers = **52,890 Watts**
 - 1 Watt = 3.4121 BTU / Hour
 - o 52,890 Watts x 3.4121 =

180,466 BTUs / Hour

- 12,000 BTU / Hour = 1 Ton of Cooling Capacity
- Additional AC Cooling Capacity
- o 144,375 / 12,000 =

15 Tons + AC

Additional Cost for 12 Tons of AC + Labor =

\$16,500.00

Annual Operating Expense = Energy Cost @ \$0.10 / kWh \$1.01M / Year

Total Operating Expense = Energy Cost @ \$0.10 / kWh

\$1.16M / Year

Centralized Power The "Makes Sense" Architecture for Horticulture

Removes LED Driver Heat from Grow Area: Saves 5% energy on HVAC per one acre

- Reduced Input Energy: High Efficient 3Ø, Iow THD ≤ 0.8% Centralized Power Conversion Vs. Traditional 1Ø LED Drivers with a THD > 12%
 Saves 10% on the input energy per one acre (THD ≤ 0.8% vs. THD > 16%)
- Use High Voltage DC Distribution: Higher DC voltage Reduces Current and Copper Costs and have Less Overall System Losses. With 352 Zone at 49W loss per = 17,248 Saves 1.6% using 250Vdc vs. 54Vdc
- 3KW Scalability with Complete Dimming and Scheduling Control that can drive both VEG and Flower rooms from one power & control system
 Saves power by dimming
 Light Source
 Watts
 Dimmability
 Dimmability
 Dimmability
 Dimmability

I	Light Source	Watts	Dimmability	Dimming Limi
ľ	High Pressure Sodium	100 - 500	Requires special ballast	50%
	LED	43 - 170	Yes	10%

Eliminates Expensive PLC & I/O: Lighting Control Systems Saves power - no power for the PLC needed

Thank You For Your Time

Tel: (909) 972-8419 E-mail: info@tslhortitech.com Website: www.TSLhortitech.com Address: 1500 S Milliken Ave, Suite B, Ontario, CA, 91761